If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-50x+80=0
a = 4.9; b = -50; c = +80;
Δ = b2-4ac
Δ = -502-4·4.9·80
Δ = 932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{932}=\sqrt{4*233}=\sqrt{4}*\sqrt{233}=2\sqrt{233}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{233}}{2*4.9}=\frac{50-2\sqrt{233}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{233}}{2*4.9}=\frac{50+2\sqrt{233}}{9.8} $
| 2061*(-25)+2061*(-15)+2061*(-10)=y | | -4.9x^2+50x-120=0 | | (2/5y)-(1/15)=(2/2y) | | -217*151+(-217)*349=x | | 50=k(5) | | g÷4=6 | | 4p+2p-3=0 | | (19x-2)°+(16x+2)°=x | | 2h-15=-9 | | -2a-5=11a+21 | | 30h=10h+200 | | 12b=3b+81 | | 16g=8+64 | | X+65-x=18 | | 25=j-18 | | 625*(-172)*(-16)=a | | 4x+11=40 | | 2c+3=43 | | 5r+20÷15=4r-16÷4 | | 5x²+2x=0 | | -2.5x^2+100x-360=0 | | 2k+25=75 | | c/9=209 | | 5x+35=2x+1 | | X+2x-15=180 | | 15x2+37x-12=0 | | 2x-22=4x-4 | | 180علىx=4.5 | | 3x^2-72x+200=0 | | x+17.94x=261.6 | | 7x=3x÷16 | | x2-4x+1=17 |